二分查找的总结(6种变形)(图文)

时间:2019-07-17 01:56:49  来源:本站收集整理  作者:学无止境

 普通的二分查找

 

最普通的写法:
 
范围在[L,R]闭区间中,L = 0、R = arr.length - 1;
 
注意循环条件为 L <= R ,而不是L < R;
 20180913083826670.png
    static int bs1(int[] arr,int key){
        int L = 0,R = arr.length - 1; //在[L,R]范围内寻找key
        int mid;
        while( L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] == key)
                return mid;
            if(arr[mid] > key)
                R = mid - 1;// key 在 [L,mid-1]内
            else
                L = mid + 1;
        }
        return -1;
    }
 

普通二分查找的另一种写法

首先说明,这个和上面的二分查找是完全一样的,只不过我们定义的区间不同而已:
 
上面的二分查找是在[L,R]的闭区间中查找,而这个二分查找是在[L,R)的左闭右开区间查找;
 
所以此时的循环条件是L < R ,因为R本来是一个不可到达的地方,我们定义为了开区间,所以R是一个不会考虑的数,所以我们循环条件是L < R;
 
同理,当arr[mid] > key的时候,不是R = mid - 1,因为我们定义的是开区间,所以R = mid ,因为不会考虑arr[mid]这个数;
 
    //和上面的完全一样,只是一开始R不是arr.length-1 而是arr.length
    static int bs2(int[] arr,int key){
        int L = 0, R = arr.length; //注意这里R = arr.length 所以在[L,R)开区间中找
        int mid;
        while( L < R){ //注意这里 不是 L <= R
            mid = L + (R - L)/2;
            if(arr[mid] == key)
                return mid;
            if(arr[mid] > key)
                R = mid; // 在[L,mid)中找
            else
                L = mid + 1;
        }
        return -1;
    }
 
上面的两种方式一般还是第一种方式用的多一点。
 

第一个 = key 的,不存在返回 -1

这个和之前的不同是:
 
数组中可能有重复的key,我们要找的是第一个key的位置;
 
和普通二分查找法不同的是在我们要R = mid - 1前的判断条件不是arr[mid] > key,而是arr[mid] >= key;
 
为什么是上面那样,其实直观上理解,我们要找的是第一个,那我们去左边找的时候不仅仅arr[mid] > key就去左边找,等于我也要去找,因为我要最左边的等于的;
 
最后我们要判断L是否越界(L 有可能等于arr.length),而且最后arr[L]是否等于要找的key;
 
如果arr[L]不等于key,说明没有这个元素,返回-1;
 2.png
举个例子:
 
/**查找第一个与key相等的元素的下标, 如果不存在返回-1 */
    static int firstEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1; //在[L,R]查找第一个>=key的
        int mid;
        while( L <= R){
            mid = L + (R - L)/2;
            if(arr[mid] >= key)
                R = mid - 1;
            else
                L = mid + 1;
        }
        if(L < arr.length && arr[L] == key)
            return L;
        return -1;
    }
 

第一个>= key 的

这个和上面那个寻找第一个等于key的唯一的区别就是:
 
最后我们不需要判断(L < arr.length && arr[L] == key),因为如果不存在key的话,我们返回第一个> key的元素即可;
 
注意这里没有判断越界(L < arr.length),因为如果整个数组都比key要小,就会返回arr.length的大小;
 
/**查找第一个大于等于key的元素的下标*/
    static int firstLargeEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while( L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] >= key)
                R = mid - 1;
            else
                L = mid + 1;
        }
        return L;
    }
 

第一个 > key的

这个和上两个的不同在于:
 
if(arr[mid] >= key)改成了if(arr[mid] > key),因为我们不是要寻找 = key的;
 
看似和普通二分法很像,但是我们在循环中没有判断if(arr[mid] == key)就返回mid(因为要寻找的不是等于key的),而是在最后返回了L ;
 3.png
举个例子:
 
    /**查找第一个大于key的元素的下标 */
    static int firstLarge(int[] arr,int key){
        int L = 0,R = arr.length - 1;
        int mid;
        while(L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] > key)
                R = mid - 1;
            else
                L = mid + 1;
        }
        return L;
    }
 

第一个...的总结

上面写了三个第一个.....的程序,可以发现一些共同点 ,也可以总结一下它们微妙的区别:
 
最后返回的都是L;
 
如果是寻找第一个等于key的,是if( arr[mid] >= key) R = mid - 1,且最后要判断L的合法以及是否存在key;
 
如果是寻找第一个大于等于key的,也是if(arr[mid] >= key) R = mid - 1,但是最后直接返回L;
 
如果是寻找第一个大于key的,则判断条件是if(arr[mid] > key) R = mid - 1,最后返回L ;
 

最后一个 = key 的 ,不存在返回 - 1

和寻找第一个 = key的很类似,不过是方向的不同而已:
 
数组中有可能有重复的key,我们要查找的是最后一个 = key的位置,不存在返回-1;
 
为了更加的直观的理解,和寻找第一个…的形成对比,这里是当arr[mid] <= key的时候,我们要去右边查找(L = mid + 1),同样是直观的理解,因为我们是要去找到最后一个 = key的,所以不仅仅是arr[mid] < key要去左边寻找,等于key的时候也要去左边寻找;
 
和第一个…不同的是,我们返回的都是R;
 
同时我们也要判断R的下标的合法性,以及最后的arr[R]是否等于key,如果不等于就返回-1;
 4.png
举个例子:
 
    /**查找最后一个与key相等的元素的下标, 如果没有返回-1*/
    static int lastEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while( L <= R){
            mid = L + (R - L)/2;
            if(arr[mid] <= key)
                L = mid + 1;
            else
                R = mid - 1;
        }
        if(R >= 0 && arr[R] == key)
            return R;
        return -1;
    }
 

最后一个<= key 的

这个和上面那个寻找最后一个等于key的唯一的区别就是:
 
最后我们不需要判断 (R >= 0 && arr[R] == key),因为如果不存在key的话,我们返回最后一个 < key的元素即可;
 
注意这里没有判断越界(R >= 0),因为如果整个数组都比key要大,数组最左边的更左边一个(也就是-1);
 
    /**查找最后一个小于等于key的元素的下标 */
    static int lastSmallEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while( L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] <= key)
                L = mid + 1;
            else
                R = mid - 1;
        }
        return R;
    }
 

最后一个 < key 的

这个和上面两个不同的是:
 
和上面的程序唯一不同的就是arr[mid] <= key改成了 arr[mid] < key,因为我们要寻找的不是= key的;
 
注意这三个最后一个的都是先对L的操作L = mid + 1,然后在else 中进行对R的操作;
 5.png
    /**查找最后一个小于key的元素的下标*/
    static int lastSmall(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while(L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] < key)
                L = mid + 1;
            else
                R = mid - 1;
        }
        return R;
    }
 

最后一个...的总结

上面三个都是求最后一个.....的,也进行一下总结:
 
最后返回的都是R;
 
第一个if判断条件(不管是arr[mid] <= key还是arr[mid] < key) ,都是L的操作,也就是去右边寻找;
 
如果是寻找最后一个 等于key的, if(arr[mid] <= key) L = mid + 1; 不过最后要判断R的合法性以及是否存在key;
 
如果是寻找最后一个 小于等于 key的,也是if(arr[mid] <= key) L = mid + 1;不过最后直接返回R;
 
如果是寻找最后一个 小于 key的,则判断条件是 if(arr[mid] < key) L = mid + 1 ,最后返回R;
 

完整测试代码

public class BinarySearch {
 
    //最普通的二分搜索法
     static int bs1(int[] arr,int key){
        int L = 0,R = arr.length - 1; //在[L,R]范围内寻找key
        int mid;
        while( L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] == key)
                return mid;
            if(arr[mid] > key)
                R = mid - 1;// key 在 [L,mid-1]内
            else
                L = mid + 1;
        }
        return -1;
    }
 
    //和上面的完全一样,只是一开始R不是arr.length-1 而是arr.length
     static int bs2(int[] arr,int key){
        int L = 0, R = arr.length; //注意这里R = arr.length 所以在[L,R)开区间中找
        int mid;
        while( L < R){ //注意这里 不是 L <= R
            mid = L + (R - L)/2;
            if(arr[mid] == key)
                return mid;
            if(arr[mid] > key)
                R = mid; // 在[L,mid)中找
            else
                L = mid + 1;
        }
        return -1;
    }
 
 
    /**查找第一个与key相等的元素的下标, 如果不存在返回-1 */
     static int firstEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1; //在[L,R]查找第一个>=key的
        int mid;
        while( L <= R){
            mid = L + (R - L)/2;
            if(arr[mid] >= key)
                R = mid - 1;
            else
                L = mid + 1;
        }
        if(L < arr.length && arr[L] == key)
            return L;
        return -1;
    }
 
    /**查找第一个大于等于key的元素的下标*/
    static int firstLargeEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while( L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] >= key)
                R = mid - 1;
            else
                L = mid + 1;
        }
        return L;
    }
 
 
    /**查找第一个大于key的元素的下标 */
    static int firstLarge(int[] arr,int key){
        int L = 0,R = arr.length - 1;
        int mid;
        while(L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] > key)
                R = mid - 1;
            else
                L = mid + 1;
        }
        return L;
    }
 
 
    /**查找最后一个与key相等的元素的下标, 如果没有返回-1*/
     static int lastEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while( L <= R){
            mid = L + (R - L)/2;
            if(arr[mid] <= key)
                L = mid + 1;
            else
                R = mid - 1;
        }
        if(R >= 0 && arr[R] == key)
            return R;
        return -1;
    }
 
    /**查找最后一个小于等于key的元素的下标 */
    static int lastSmallEqual(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while( L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] <= key)
                L = mid + 1;
            else
                R = mid - 1;
        }
        return R;
    }
 
 
    /**查找最后一个小于key的元素的下标*/
    static int lastSmall(int[] arr,int key){
        int L = 0, R = arr.length - 1;
        int mid;
        while(L <= R){
            mid = L + (R - L) / 2;
            if(arr[mid] < key)
                L = mid + 1;
            else
                R = mid - 1;
        }
        return R;
    }
 
 
    public static void main(String[] args) {
 
        int[] arr = {1,3,4,6,6,6,6,6,6,8,9};
 
        System.out.println("----------general-----------");
 
        System.out.println(bs1(arr,3));//1
        System.out.println(bs2(arr,3));//1
        System.out.println(bs2(arr,6));//5
 
 
        System.out.println("-----------first------------");
 
        //第一个 =  的
        System.out.println(firstEqual(arr,6));//3
 
        //第一个 >= 的
        System.out.println(firstLargeEqual(arr,5));//3
        System.out.println(firstLargeEqual(arr,6));//3
 
        //第一个 > 的
        System.out.println(firstLarge(arr,6));//9
 
        System.out.println("------------last------------");
 
        //最后一个 =  的
        System.out.println(lastEqual(arr,6));//8
 
        // 最后一个 <= 的
        System.out.println(lastSmallEqual(arr,7));//8
        System.out.println(lastSmallEqual(arr,6));//8
 
        //最后一个 < 的
        System.out.println(lastSmall(arr,6));//2
 
    }
}
 
--------------------- 
作者:zxzxin 
来源:CSDN 
原文:https://blog.csdn.net/zxzxzx0119/article/details/82670761 
版权声明:本文为博主原创文章,转载请附上博文链接!

 

相关文章

文章评论

共有  0  位网友发表了评论 此处只显示部分留言 点击查看完整评论页面